BEZIRK NIEDERBAYERN

FACHBERATUNG FÜR FISCHEREI

Anmerkungen und Ausführungsvorschläge zur Erfüllung der strukturellen Anforderungen der Fische

1. Längsvernetzung herstellen:

Rückbau von Abstürzen: Gefälle neu ≥ 1:30

Sohlrampe soll nur oberstrom des Absturzes gebaut werden, damit Kolk erhalten bleibt und oberhalb strömendes Gewässer gewonnen wird;

Weitere Eintiefung verhindern durch Laufverlängerung, durch punktuelle Zugabe von Grobgeschiebe, durch punktuelle Sohlsicherung

Beispiel für die Ausführung: siehe unten

2. Quervernetzung sicherstellen:

Biologisch durchgängige Anbindung von Seitengewässern / Altwassern herstellen. Keine Tümpel (Fischfallen) im Überschwemmungsgebiet (HQ 20)

- 3. Gute Hydromorphologie für alle Gewässerlebewesen herstellen:
 - a) Auflösung paralleler Ufer
 - b) Dynamisierung der hydraulischen Verhältnisse durch Absperrung >40 % des benetzten Querschnittes bis Mittelwasserhöhe
 - c) Schaffung fischzönotische Funktionsräume durch Einbau von Strukturelementen (lange Baumstümpfe mit Wurzelteller; Totholzbündel; Pfahlbuhnen) und Neupflanzung von Erlen an der Mittelwasserlinie; möglich sind auch Kiesdotationen (einzelne Kieshaufen mit > 1 m³ Flusskies; Kiessortierung 16 / 32 + 32 / 64; Mischungsverhältnis 1:1)

Beispiele für die Ausführung: siehe unten

4. Fischökologische Anforderungen im Wasserkörper erfüllen

	Längsvernetzung	Lebensraum	Mittlere	Fischzönotischer
	(Min. Maximaltiefe)	(Durchschn.	Querschnitts-	Funktionsraum
		Maximaltiefe)	geschwindigkeit	
Quellbach	≥ 0,05 m	≥ 0,15 m		Abstand in m:
Forellenregion	≥ 0,2 m	≥ 0,3 m	≥ 0,3 m/s	$\emptyset < 3 \times b$
Äschenregion	≥ 0,2 m	≥ 0,5 m		(b = Gewässer-
Barbenregion	≥ 0,3 m	≥ 0,6 m		bettbreiten)
Brachsenregion	≥ 0,4 m	≥ 0,6 m		

- 5. Boden / Oberfläche von Gewässer und Ufer naturnahe herstellen
 - a) Die Sicherung des Ufers soll, ausgenommen im Bereich technischer Bauwerke (z.B. Brücken) durch biologische Baustoffe übernommen werden. Ideal sind lebende Bäume, die

- nahe der Mittelwasserlinie stehen und neben der Ufersicherung auch eine fischzönotischen Funktionsraum im Wurzelschirm erschaffen sowie zur Beschattung Wasserkörpers beitragen.
- b) Die Sohle soll ebenfalls nur aus standorttypischem Material bestehen. Ausgenommen ist der Bereich von Sohlrampen. Eine regelmäßige Geschiebezufuhr mit Grobkies ist bei Geschiebemangel in Form von punktuellen Kiespolstern sinnvoll.
- c) An allen Gewässern sollen Gewässerschutzstreifen mit 10 m Breite eingerichtet werden, in denen sich die Gewässer ungestört naturnahe entwickeln können.

Ausführungsbeispiele für Längsvernetzung, Linienführung der Ufer und Strukturierung:

a) Rohrdurchlass

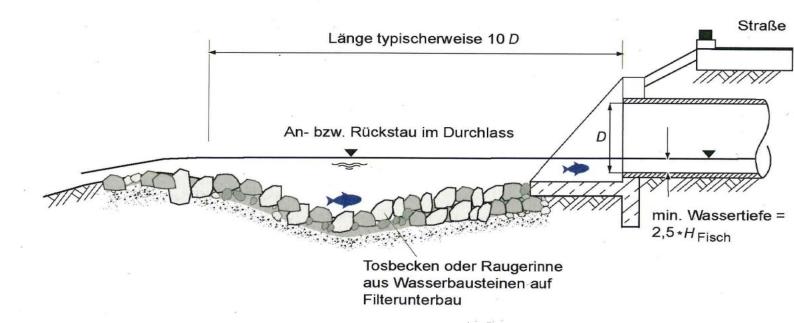
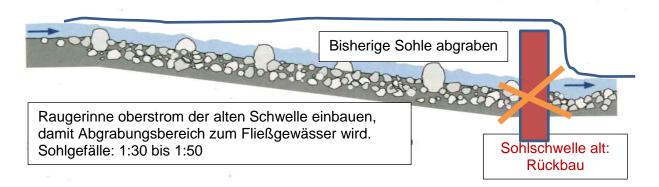
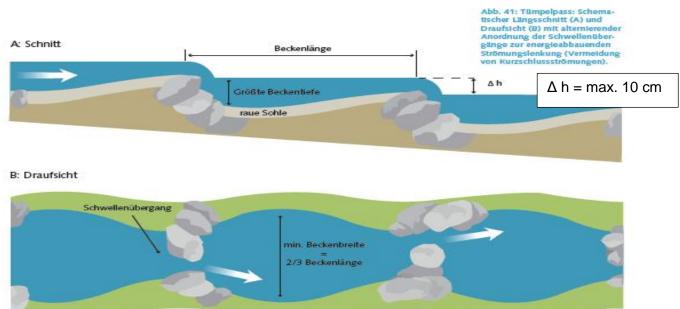



Bild 137: Tosbecken oder Raugerinne aus Wasserbausteinen stromab eines Auslasses zur Auflösung eines Absturzes (Quelle: verändert nach FAIRFULL & WITHERIDGE 2003)

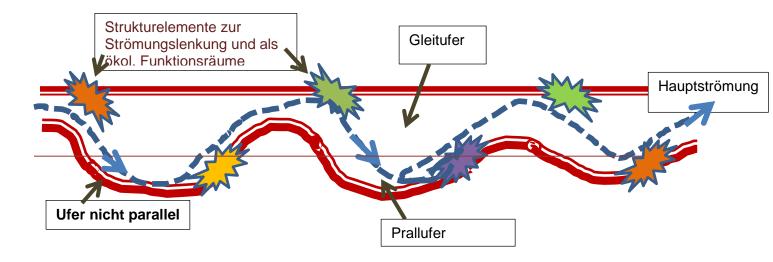
b) Absturz


Herstellung der biologischen Durchgängigkeit durch Umbau eines Absturzes (Sohlschwelle) in ein Raugerinne mit Störsteinen

Alternativ können auch beckenartige Strukturen eingebaut werden:

Abb. 40: Schwellen (Tümpelpass mit gut passierbaren Hauptübergängen, gute Energieumwandlung.)

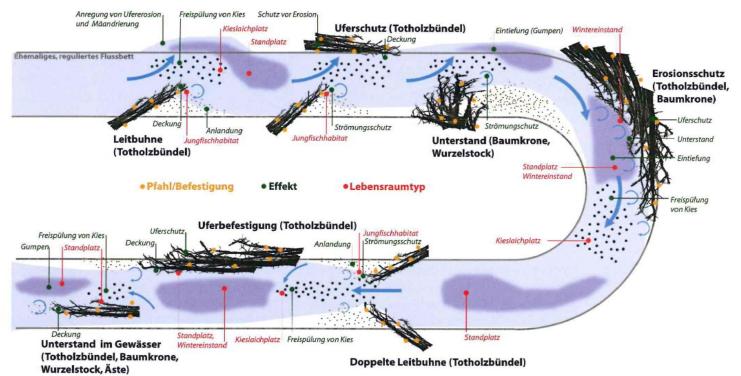
c) Hydromorphologie


Parallele Ufer und ausgeräumte Gewässerbetten erzeugen schlechte Lebensraumqualität durch:

- monotone Strömungsgeschwindigkeit
- gleichförmige Substratverteilung
- gleiche Wassertiefen

Nichtparallele Ufer und "möbliertes" Gewässerbett erzeugen gute Lebensraumqualität durch:

- vielfältige Strömung durch Lenkung der Strömung in die Außenkurven (starke Strömung am Prallufer; geringe Strömung am Gleitufer),
- differenzierte Substrate (Kies und Steine im Stromstrich; Sand und Feinteile im Gleitufer)
- unterschiedliche Wassertiefen (tiefe Gumpen im Stromstrich; Flachwasserzonen im Gleitufer)


<u>Uferaufweitungen</u> sollen analog zu Prall- und Gleitufer angelegt werden.

Prallufer = Steilufer Gleitufer = Flachufer

Durch Prall- und Gleitufer ergeben sich wechselseitige Uferaufweitungen, die bei Hochwasser strömungsberuhigte Bereiche ausbilden und Fische vor Abschwemmung schützen.

d) Strukturierung

Strukturelementen und Darstellung der Auswirkungen auf Strömung, Substrat und Wassertiefe. Der Abstand zwischen Strukturelementen soll im Durchschnitt bei max. 5 Gewässerbreiten liegen.

Muckenthaler 15.12.20